Engineering Mathematics
Saturday, 28 June 2014
Variable Separable Differential Equations
If
the
differential
equation
can
be
reduced
to
the
general
form
f
(
y
)
dy
=
ϕ
(
x
)
dx
,
then
the
solution
is
given
by
int
egrating
both
sides
.
∫
f
(
y
)
dy
=
∫
ϕ
(
x
)
dx
+
c
Solved
Problems
1
.
y
1
−
x
2
dy
+
x
1
−
y
2
dx
=
0
solution
2
.
(
x
2
−
yx
2
)
dy
dx
+
y
2
+
xy
2
=
0
solution
3
.
sec
2
x
tan
y
dx
+
sec
2
y
tan
x
dy
=
0
solution
4
.
y
x
dy
dx
=
1
+
x
2
+
y
2
+
x
2
y
2
solution
5
.
e
x
tan
y
dx
+
(
1
−
e
x
)
sec
2
y
dy
=
0
solution
6
.
dy
dx
=
xe
y
−
x
2
,
if
y
=
0
when
x
=
0
solution
7
.
x
dy
dx
+
cot
y
=
0
,
if
y
=
π
/
4
when
x
=
2
solution
8
.
(
xy
2
+
x
)
dx
+
(
yx
2
+
y
)
dy
=
0
solution
9
.
dy
dx
=
e
2
x
−
3
y
+
4
x
2
e
−
3
y
solution
10
.
y
−
x
dy
dx
=
a
(
y
2
+
dy
dx
)
solution
11
.
(
x
+
1
)
dy
dx
+
1
=
2
e
−
y
solution
12
.
(
x
−
y
)
2
dy
dx
=
a
2
solution
13
.
(
x
+
y
+
1
)
2
dy
dx
=
1
solution
14
.
sin
−
1
dy
dx
=
x
+
y
solution
15
.
dy
dx
=
cos
(
x
+
y
+
1
)
solution
16
.
dy
dx
−
x
tan
(
y
−
x
)
=
1
solution
17
.
x
4
dy
dx
+
x
3
y
+
cosec
(
xy
)
=
0
solution
MMF.7h]e7P00kEQKLmY65?h5oPll`Xa(]K]JGO:6GN8b=N01hWBVm46aIE]C3:V*4dR6omhmNm=I8F4WSifJf9c;kSWO^NaI:L_Ai?ed=Qh|A]?9fONciNE|)5Q(ImeaFSj=dlOl[W)C5M_=)Uee?^K[cYNX7oG)UX_AhW[H7OkcTYKiIWe)nToUld[8KhNc^C3DiEhWm3ZnT?`jF0bkQ7XMn:Dn2H1j5o1g?]PIoW5c?AQ=^[fc`mUb?U`|AY([*36OC`KSHOO3=R|jlj`|loFSF;d]^khg7UmVjo:Uf4nb[lZ549=V(Jf9ZA:cBSaMgElEFOJge*E=)Vf)el`A9*jKWDON8Wo)]QdQjl`fcnWJJV;_L_=Bi28f_3iYGDoJXVh9VkC4CDh5CTi5CUY29bfaToKPBG?dY3elFPmO)jM]EFl9Wih:Wih:WkJ4Ce_2YngQdnK`JG_h[:Gj[2ElEPmOb[n9Xd(m4RZJN(B;^:8Yd7X=4c*9]290RcPXZ6I2Y8P4cOG^61J5VTT44f]J=;3alKT;]2H11]4d`50)?T|H_1l[1V0*[N3FlfN9`|PS4I_OIiZ;9DOeoP*iTD2hH*Q2*R4kVPKg0M)(c49OFbH0`=0Q=Pai8(a`T8W*(8T3S_XhJ0B1*PHB`c0D7LDYX1a]`A1XE66S|N|Cih1Q08bPQ31I0l(`Fd311;Pjg37)`|X_Re3P;(Jf4l*46480469]8:0Xe83QI*5V58C0;0*8ieJY^l7dCh`22A8D2?MaJf4H763XoAbGPPO*9jHM^3`F9RXNhQkPP89Z)TIdDWEJj2(J]D98ZiB6)0VQM6lHGUT=*f*9R|0(SS2F4A|^ZKa4n314^14Ri3l2ooX`A87(K:*iS[M0l(IWQ5Xa0_n1YVDOJ|Pa^6OJEXcMajX?3LN`2SMR[;[0L64EFP`0c^dlR94VZJ0U?Z9AnQ):?2J|bV`BX?I))2Y(4^8]4NZH9(I(PThHlGeW]_S4IJTc^1RJ?7j06EhER?S)D?8SQh]a^XR?6Y4*gm4iXi78`FAEC:KF:]Fa]2c76d?(A5i*(I2DLf_BbHXLT;KjA8i8JQR:6GTb38=C8VLT]Ab^3I5S([HLJPe2dN4P3=mCLTcJ0D(H)Qm434ZoFRSkdb3DTi;KYDiei;2dRICC|^9|BZh6=n;:m3d9ff?RFg7:9fR9i5b]n6R]k2:Yamm4JiWH5F]i[?o6L_:1=Q0FVMK8:2G?]9I;bM57Jd)9XPeEI;FAe4J)=Sji=cVMSENBAJ0TSJQWdnVRjoO5NO;kXOPU*8PV4b9i;c`oe5hoU8`db)Sa`jAB|8K53DnNBP5?WH)Rf)Qel;1iTJoCHZohB?2Ck34](lG7PYmU:oU:YRB9T=bVAIinFVEDXhD*Q^FMiP3lL5LFZNHYf_5NbeR3;6R*lIX|GHT8h352W)QHoQ(g|fH4kD]JLPaJ:RfLi*68IFe04)RE0APARbn_Ij8HTdga;5i(5mV^e?fY?ZC_b`j7EG34IeLGiaN[Ud`O0Ml;)FLL;iaNCn|6AMWUC`(Q]]U=S_g6YGS?aNlB^J3V7lIMZ(UX|^P2Q?U_dhlGPoT*U0L`?UT(9`]h6Ak3nNmmGeilGeifA`nmiEbL_IjPbjN|H^kcQhN|46fDYj]:V^UGm4YbUb;V4c9*I?L_MmTm([mYLOFH[K=2N3TXB0lRJIGb0Oh|^o1g;lVNA2OX^GP^S^2;njaJ]4);5)diK]L]8;JKeH|KFKi54?(_N)NW_*6K[d^IUlLRUOn[D2gIU4o8NWjOKH7XZhd;N6bfAFR=lK0L`O^=n=K1hWdW0lLkFAC;BTWG2_NOW_XAeh_X]knjllgZ2jYEGGeCK(*QO=hJl73`8SGh19HIKRRRX[BAk`4d8Lj2^GR381ZcD4I6AG^7`f5i:e[fH6^|`Nm)VMVO=;)c[G8YAGZ=2m?V|6h8NFWBZY*_^Z6Ab]`[2^Yg:ejmL14JX:8PVkEek:b6OI_M=B:C7E72nIAnkLWNXKbfkMfS_C^dMmnDc(01Q99QLh5BlHILjEHo:[OC2bdi?9gP]UQKfTNShkF4Inj6WC;cBZIEQn6fKCJSS_29^Yb^AMQFRi?95]i[J?J_7==3KKCV3ljIAl2|n:|cOA^?IEC;m)i7c]KMYVc`oQJHH48VkYNNJ^OG8;_=BG]^_lC=`nFee|CgEZe]6VL?k_V6Ra6U=OW9Y|SZGTdBM6(`iAeS2M[?VF?]f8H6*_cS6lC]a;NRCie[]Bem[mZCZCGPj]NK_CM|0XPYa]|KUj2JdJ)lXf^^BU;[oHD_AH)S5_P?IO1h(RX0mD_X)17kiZCl=1QRRa3DO6ocMF?2R78PW_bEhSEOl2gR^QE=S2NS4i?1h=h9KhoRK[=mNkZ(|alNj]Ea|ONB?*R^5X[BT);6*EbE;WQSjI[_GEKMIMG|USLNWYDeK7:lhTM=oI3ZRiM(CcbSfPOh`ooJokHFO|*kkKl3P9X^.mmf
Newer Posts
Home
Subscribe to:
Comments (Atom)