Engineering Mathematics
Thursday, 13 November 2014
Properties of Laplace Transforms
1
.
Linearity
Property
If
a
,
b
are
any
constants
and
f
,
g
are
any
functions
of
t
then
,
L
af
(
t
)
+
bg
(
t
)
=
aL
f
(
t
)
+
bL
g
(
t
)
2
.
First
Shifting
Property
If
L
f
(
t
)
=
f
(
s
)
then
,
L
e
at
f
(
t
)
=
f
(
s
−
a
)
3
.
Change
of
Scale
Property
If
L
f
(
t
)
=
f
(
s
)
then
,
L
f
(
at
)
=
1
a
f
s
a
MMF.7h^S5000cEQKLmY65?h5oPllRQVIdEjTGND=^lAUJ|03R])IdPO5TFfVF:A2KY=Vo=mkcVYG)Y8Ud^BY9|KW)oOK;R;KnO;]J[fH9_?El^c[fOIb?I|VZkFgB(_7AOZ`^a_MI(GaT:OkdO]M?_Y;CD8m?]|VlnAji|gnO4k;gB4o5i?7lVT?o=_INP)N_=0OAOhX0(i?dfCV(NJ?V?A7?(3g*;nAlA^9d]V_=mOCnM8KWkfLKCNc99T_[c2=cFHiGLblMlN|66fb|]cU3j1m;;g0WaJkM5oi1|`jV3_(:b`jF7Kd*hMIQJ))G7F`k^2hVdoP;aJGFEhn5enFfMl=W`g`NHM_lfBRhJof7jn:;?^S4LXnXO(HMScJbUPdT87bTmeCMQ`1Lk*n?:Ei8m;niN6if(4*FQKaX0G_UVn3lh7bnD3io5Cio5CiO:1l?U0n7bjOmiO?Ql|GgODD0gF;K]f6o`n|=oMIE=7(IkjfO)3j8ZaX0CBC5TP0bRZ5:)1F4:70dP[Xd2YYE8X|R4T8f5cVEmJO?:B3R|*dV:DiDL4d`XV^0:K1[22|8glbFCRnP]Z2RK186lB]ODb2V4A21aS9Q6=g;8gQYK30M65R?C=(`=4AMHamH(8Qk4CT*=a:SPNdJ982a`k43PQB7JL]h24aXBU`eNC6MC|VkH6P2*Q66R;(31`*m*01B3ZM|)ELA4eLXDSQ*U?O(*6BYR3=(UX7TY=BYJ1ZTX8Z1NTD(HGcFVRg`Nf?9XG8V1*B1WBeJ1XQYV7]*cZ:D):N^7D8cK5`EHDAgH4*|n2FeXB)Vdf;0T:CEHQhdm:8=R4bhAd86jmAA3cQ48C;8m;4Kmc*RQh5AMM0TNP:Xm^SX:CYZk8XY2IH^X^Xb28ZS2h]KKK*9Z`a_;2n=0f_ZbedB50AGD=MkH13DE)JaPC)jm^0=437CFYa*6SBo9RCR;5XnQY;|]aaB(HBAmA4TGf9=*Da)El|25XgBl3JT;N^;D7^WD1B43H3HT7[BPYD2fWJ;QJ*=F*|J(UJ5b(cee8]4ZJe]K0jU3D(ZF54PO9U0k0YikG;EUO(mEQ?WiT;TS_0:C3W`P7J4W=3lQ[AfC1cBNXJTMEPW1`)9^RWU;TTjn^52G8n65bC*J=Xm]=UJ)o9|5I]CLMLUGDScEgIX;XUEm(Kn(0(O9)f;n1_QJZH:6D6]JG`|U:cADI)oc8[5F2U;EoKMfg^?IA:l2R|a5AY|;3Bd71N_J`d(UT(IJEZZC9BeI;ZTkKajFilXeT(Am:KmGZeB[aP0^LYV4C`bi209*)FnEAh^_OJ3j0ESoG`n)]Wb4XPNYAk7SP[0Ci|CX_RH?G`6O=RUjO5U`X[`(_|8Bfc2V_0jfa__SAEW1Ph]bTl(gkHImaVRbG(bS^;(?WIik98;NK4hZgURAjNk)657EjjQ`[`8*9)]3Koh7?I0Z03*a|TL:GBXZD^TFeVP`aY=BDj0NG;jcD(HgTXW^2kHi9m;^enERlf2Lb6XaHNlOGEaOW5oSVcA`1l|2Yf[KRjGWDM`]S=C`l1I[EAbgnOCLBEa4L;Hg?aRlTLZ(fkQHLcVBlC3e?Ho;ajOc7Mc53hP|jGbFbIh=OE1IkolMO]aMO]iFmnm*)W6^;j_h=Y3g(bgVkPO19Ai4CG^cb36IEOQUE^R|)W[02=5a?BVmoG^Uj:Ke|Ogcl*KY4AT;Mm:g*^OOAlMlR?IIZGAj[m|*7gSON7on3M^go)kg3KRKl3BKId5IB?FFiMFlkeN0]W7JjbZZeNFXGf:S(Tan07WVJe:OGQ]OAUNh]AK[d8b0dll2^CG]MaSmn)YH_A]Oa6C2cTYGlWn7O^a=]MLBb7aI_7gKgi?i8OfYS_KhQ]9E4leQ=aTogV*3?4C=Gc;K5S?aam0enPF;?oho69kX__k?kUHiXoI(=b|]6_Ag)GkTnHoPoW*ZcCDg4B06ifcQLcVUb(kBB9hckeHjf)O`D6T42o`?Gj;n^W178.mmf
Laplace Transforms
Let
f
(
t
)
be
a
function
of
t
defined
for
all
positive
values
of
t
.
Then
the
Laplace
Transform
of
f
(
t
)
is
,
L
f
(
t
)
=
∫
0
∞
e
−
st
f
(
t
)
dt
s
is
a
parameter
which
may
be
real
or
complex
number
.
Transforms
of
Elementary
Functions
L
1
=
1
s
proof
L
t
n
=
n
!
s
n
+
1
proof
L
e
at
=
1
s
−
a
proof
L
sin
at
=
a
s
2
+
a
2
proof
L
cos
at
=
s
s
2
+
a
2
proof
L
sinh
at
=
a
s
2
−
a
2
proof
L
cosh
at
=
s
s
2
−
a
2
proof
Properties
of
Laplace
Transforms
Linearity
First Shifting
Change of Scale
Solved
Problems
1
.
e
at
t
n
solution
2
.
e
at
sin
bt
solution
3
.
e
at
cos
bt
solution
4
.
e
at
sinh
bt
solution
5
.
e
at
cosh
bt
solution
6
.
sin
2
t
sin
3
t
solution
7
.
cos
2
2
t
solution
8
.
sin
3
2
t
solution
9
.
e
−
3
t
(
2
cos
5
t
−
3
sin
5
t
)
solution
10
.
e
2
t
cos
2
t
solution
11
.
√
te
3
t
solution
12
.
f
(
t
)
=
t
/
τ
,
when
0
<
t
<
τ
1
,
when
t
>
τ
solution
13
.
f
(
t
)
=
1
,
0
<
t
≤
1
t
,
1
<
t
≤
2
0
,
t
>
2
solution
14
.
√
t
−
1
√
t
3
solution
15
.
cos
√
t
√
t
solution
16
.
sin
at
t
solution
17
.
e
2
t
+
4
t
3
−
2
sin
3
t
+
3
cos
3
t
solution
18
.
1
+
2
√
t
+
3
√
t
solution
19
.
3
cosh
5
t
−
4
sinh
5
t
solution
20
.
cos
(
at
+
b
)
solution
21
.
sin
t
−
cos
t
2
solution
22
.
sin
2
t
cos
3
t
solution
23
.
sin
√
t
solution
24
.
sin
5
t
solution
25
.
cos
3
2
t
solution
26
.
e
−
at
sinh
bt
solution
27
.
e
2
t
3
t
5
−
cos
4
t
solution
28
.
e
−
3
t
sin
5
t
sin
3
t
solution
29
.
e
−
t
sin
2
t
solution
30
.
e
2
t
sin
4
t
solution
31
.
cosh
at
sin
at
solution
32
.
sinh
3
t
cos
2
t
solution
33
.
t
2
e
2
t
solution
34
.
1
+
te
−
t
3
solution
35
.
t
√
1
+
sin
t
solution
36
.
f
(
t
)
=
4
,
0
≤
t
≤
1
3
,
t
>
1
solution
37
.
f
(
t
)
=
sin
t
,
0
<
t
<
π
0
,
t
>
π
solution
38
.
f
(
x
)
=
sin
(
x
−
π
/
3
),
x
>
π
/
3
0
,
x
<
π
/
3
solution
39
.
f
(
t
)
=
cos
(
t
−
2
π
/
3
),
t
>
2
π
/
3
0
,
t
<
2
π
/
3
solution
40
.
f
(
t
)
=
t
2
,
0
<
t
<
2
t
−
1
,
2
<
t
<
3
7
,
t
>
3
solution
MMF.7h_VD000kE[[L^8h5Wj2_0?k3jXLaY9lWIZJ:Y:QNe:K*1L`?E|ek0lWkCCDL(TJYboKaK^_9(_f|Bf1QB5TIc[Y9SZjO^NLClM7(])K`I_Qj:hg^AT);[iMC:m7oMiT)6[O1O7|;_PhOfRm2j?=NQD|F[o?Eje?K]Of)QOCbLgT]]o^onLiR)O[eBGZc^;UP]Jokho6M:JfKK*LXfGBVUmjTghK8J)5;:)5COJ9[1m]o:=]dmKn_mkMmVh6kLk5mV8jkTlV=h)g3(Ih?)SMmM^oKL:X=*kSN;kjB7]_h[IYm:9i|4SVYS8ZbCRELB:CTVbEn]^YS1;I:KFk9MT[bGhISfWLgEf7ZoPinSX8?nOeB56?BoD29b9ioG3ahFdDQWoVSIJ|(IgA;|dX=4))0X5[C)K;L=)RUJgANQV|lRK?^5hoAg?ZQ(88GcT2UmDGRf)5nURQ?]jU?]jU?UJXSaGZHkGjF:hnEZ]?b_*T2[e9FFmNoem:Kf`P9bTS0aVNZ:Ne1[6C(Z5UI0W1XX8[)]V|0H|6QcF8|T_;]^ST|Dj)47b`16D^(Y;ACfeF=Y(RPh546H(^38KMmA:1`D2R`LiFO^8XdWZGjVIfRI0l;V4agPN;L21f:R2013?[R39KgR92h5KXRYTA0i2F7CPa|`(RZL*|hJB2G`27CJPdP82I1OaD840k34f0KC04*|1^SPekaCFQ3*P4*10`2)4nB0FB)I0:5_B)GIRL)?Vja0F:4`o)k*?1PQ0|CTHaPHF1ZQJ1gB`X912|]2)3L9Te2SJTo?608YH?5;5=B2d8`fH`a7PK^|:f64mB)]QlFjAJf*kTP(e*H57f*=W?VNJHX0bXh)3LY0hdP|)GC`DkWmEa`4c(2BC5hGQPGSl_^g0[^906;USMIJ^;[N1Jg:j^T6`hQ:VN[^P28[Y|MD^D)*|5H8l]ClAL7UcNBeRHBP*f*AYj2*MBbLUElaR0bb`J00=hOPk==d4I6=o7H4FOi7Ke;D1^g`I^lAdha0EllCdXn61o8M(|A1HC5DEL25|4a1gCPX:M)`RIQI1T^PG9PnI29Z0Q*VJQ[A0H4*m;FA?QY|dJTdfIRCHLj431=JaLH4Jic:H|F8F7alckR0M8W0XH2WaOY08d2Hn*)9)PKa0?TUhV0FXP33H78_0YaH=T5Uh*0O|3dC1YiQdi?e)48TkJFMN2MgRXc0c9HfD^IBIifg]77iRV`F4KQ?i=Y6A=eXZhE6bU_j:E|hRg`km8]18jbQ?eW_SdN=aS[AJMTHPF[RFGRFReNDgUEk*j78D:UI^e^[cE;KAj)lOj^jfaaeR8^DB:NS*LC]YVUnhW|n_*ohPE:(UX5GlZ;1oKa**dZD)B)Uc=8I(68^T|BCRC1YI|mZ9X;OZa7?=Z_PZR[hW|DWT*OPcR(94m:Xo21Cld9CDn[GTOd9caOQ5RPIJYd8lOQ(C0mko4DB1T34Jl4GE4DVM9j^aBGK2P6[0TP^iXSonScfDQd;;9be`RS591E)Q^|F[^6eIQRIhFVhAf_[hMDFL(e]6BWQdWhIMHl3?iAEfC(iceHU]lm?KZLQAnh(bg;1MidWhnklO|_n8m(O8|aW4J76d4N`m_QnGE:DOhSjA0QfF381Q:(PlCVn`M0W7AY8Ko`478lA`FeORPZgmbdm3Bn;Nk=W?jcF3BI[37_`io_nZ=njaabfHOC?Z32C|?gk40doTf_OXf_FkOQW5W)ZJk^d)5AoHaKK??V1LkNM]mV9L3()AimL0IV=F|7o(bV?]3n3QOQAo0b7D4IU`|L^5Y_IW7ldmP`Do1hSWL:=NhKWN5_4fdV|a2P2RNPJU^PjM5l00Z9U6`fU0`BoWd^f`bgo0J8egf]S)U8HE6C65LbMS]m7gKkM0?SaK7m)3P|S74bSdB|P[T9^:HY_:83Mg4WNeF0HLJ=dhQV4V1S|(^;Mj`daLKbA|gANPBMch5DK0(ha2hi_=|oS3;aFG`EDj::0b03j5c7mK;YdGh9JmH?Bo_fA;(K`aJ0^l?8oVQCdfjKhaoiik9|EKj05MEf_Z;L4T3;H^PbSi_17lg:QlRkS;2G6I1UcUYQfaTdQ(CeX^_M^Y?jZiXC*fP*1i38U6SDa[|EJDdP_HQ[]M9U4]I]6;b?djUk1jU`R;48:jUEKJ=PY(hJ`oVcIbKS67E|SmV6cOc*51]5)|5N[[|*O^`gY`DkNJXJ:U]IdgPI[aXK=cmISd]d=YfQD0ETOMM]7h:XgPN7QQib`oIGJ4m]AO=3VPf6Gm=:mk(X`g87lJcnB)o^QO=ek=PmA4lO^0cNo`*;(9MnXgGRdlP5i7YCk?J5=b4gC0ALI:PUQn112XMJ[34SHi4WFYM]k9*f|:RFFD6k]aB[FBU8(T8b]EaPbUG6I_:;OSLJRDa]5akWnHmi*IbK[a95:f=ecXgGQ57J`)F`GYY0f|1M[*0bnTVf`FaiQ`bIZX`^eZH)ND)=S)FFUV^|Ab]YfoQPm6BaVSmDa5hG47Ubah:2Qi8]):W_CZZbV))C1e6f|=QbXV]F:NZCTOQ4FBnF4aA44DEahnlZEBDA3^CQh[3;5|Fdn8VMU6ADX5G;b]hU951aVd5JjXFB3;WBVfBM5Nd[GCTk`giEAm?jU2Be)fgTPcO3e87bD;Re2RUhnD)Wn7UEKUA]TMnZVW3Wa*H]gFDUW6c[([QJ|WPoZb2bdoleFNURZEj^N1[I2TiQ:Fk7MJ4F=E7Qbg;E50mHTW]Z(HYDj|ICU`?Yla0FQ]0`G7Y*d)?hC]?3aE2V*[VeGg0Z7:7bT9)|fEZQRF9YC1?3b_Ek(jU|SPMgbP;EKQTioWX;9KRVHc6U0Z[B[GMNKRZZNfQN|VcdD1G1KfceTVBchYcT[_D:VFUVk;IFJ[VLD26GNNLFeM7fFSilDKW?8gdSZRX=Ub||K(DLihU9Q3=CJ9gJ5HhDGI]dnb*:]|ARP|]nD::Bdnm0jVLWm;L(JRo4nieS]1hi`VbMRI*Lh_GMi3L==8*OOB7=5IOJ^^MGhma9mPlQV6mh``7[A(dI4_ZgDhg^mVc]Ji(|=hmM;?KW)JGSUS_5_[h]hi7^_g7[b1K)SbJ:E:CIYA]50WU:Egmj:S`TUjjLlhkKZd[iI)mKl7WORV``cP_M0M=G^(UO3(3F7X6d7^3[lQW0efJ9X5Il|d24n5lj7[ac;m|^OgNhg^?kcgnWSg4LHIo:lV_mJDTXWg*TLDdeHg)bgdK*AVcmLi4CG8m)K1C?0HEZQkW[[lbAOfk;YdGc1YYcgW_jhWN)E9fll7?e2oQ0=EUC=?S0]4kW;k65jD7_LjGkJSM;dY[_UPlnZ]BFIRC_h:|i*CIbdNTno:Aj5d5o6EHXk`BeNABYJk9]cV8jicgIKHLTBJSm:h]JS?ZbolUXeBZb1n]D_]Gaom*(kfKM_InFdUVEADAjP8i2HDel:^fEVglVXCG^gKjbhA*SAMVmElebEk5WW`Ce?mZcj_J67FO(lOG*fn3F7ZGTZmaPacd5KkS7eCg([UQAR:3DE?CV_^kc_M*JifaVfQELbO:D^(Sin]4c:3NDMm_UA_N]6fg5m^;o`7fIQ2m.mmf
Monday, 13 October 2014
Differential Equations
Solution of first order and first degree equations
1.
Variable Separable Equations
2.
Homogeneous Equations
3. Exact Equations
4.
Linear Equations
Tuesday, 7 October 2014
Linear Differential Equation of First Order
Solved Problems
Friday, 4 July 2014
Homogeneous Differential Equations of First Order
Solved Problems
Newer Posts
Older Posts
Home
Subscribe to:
Comments (Atom)